
As microscopists, we often hope – and intuit – that the microstructure we measure 
correlates somehow to bulk properties, but this correlation is difficult to quantify. Machine 
learning and specifically, deep learning, is a powerful tool to establish the presence (or 
absence) of such correlations with its ability to flesh out relationships and trends that are 
difficult to establish otherwise. This application note discusses the use of deep learning 
tools, such as convolutional neural nets (CNNs), to explore AFM phase and PeakForce 
QNM® images of impact copolymers, a polymer blend of polypropylene with micro-sized 
domains of rubber. First, CNNs are used to successfully classify AFM phase images of a 
variety of ICPs, where the rubber morphology and distribution varies. The model shows 
that the PeakForce QNM deformation channel provides the best accuracy in classification. 
Next, we use a regression-based CNN to correlate the AFM images with bulk mechanical 
properties, where both phase images and the PeakForce QNM deformation channel were 
used separately in the model. The results show that the PeakForce QNM data exhibits 
superior correlation with the bulk mechanical properties, with high accuracy for predicting 
flexural and Young’s modulus, ultimate elongation, and impact toughness.

Machine Learning and AFM

Machine learning (ML), a subset of artificial intelligence, is permeating many sectors, from 
healthcare to transportation and drug and materials design. The story is the same for the 
microscopy world, as these new tools are being applied for the improvement of microscope 
operation and image analysis and interpretation. An example of application of ML tools to 
microscopy is the use of deep learning (DL) for atom segmentation and localization, noise 
reduction, and deblurring of STEM images.1 Another example used DL for high-resolution 
fluorescence super-resolution microscopy to create a model that can improve low-resolution, 
low-SNR data.2 Establishing structure-property relationships has been less common, 
although a group of researchers led by T. Young-Jin Han did use computer vision and ML 
techniques to predict compressive strength based on SEM images.3

Application of ML toward scanning probe microscopy has been more limited, partly because 
of the slow acquisition throughput that hampers the large datasets typically required for 
effective ML models. Some noteworthy examples include the use of ML to enable fast 
scanning probe microscopy with specific application to piezoresponse force microscopy4 and 
the analysis of surface parameters of AFM images of bladder cells.5
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The focus of this application note is the analysis of AFM images and their subsequent ability 
to predict bulk mechanical properties. Two kinds of AFM data were used in this study: phase 
data, which provides primarily the morphology of the material, and PeakForce QNM data, 
which provides both morphology and quantitative contrast related to mechanical properties, 
such as modulus, adhesion, and dissipation.

The material under investigation is an impact copolymer (ICP), a common polymer blend 
used in many consumer applications that require dual properties of stiffness and impact 
toughness. First, ML models were developed to classify the ICP based solely on its AFM 
image. Next, more sophisticated models were built to predict a variety of bulk mechanical 
properties of an ICP based on the AFM image. The PeakForce QNM data provided more 
accurate classification and prediction of the ICPs, in part due to the additional quantitative 
mechanical property information included with this AFM mode.  

Experimental

All ICP samples were cryomicrotomed; one specimen was provided for each sample.

Phase Imaging
Phase images were collected on a series of five ICP samples (A2, B3, B4, C3, and C5). 
A total of eighty images were collected on each sample using a Bruker MultiMode® AFM 
with a variety of stiff probes (k~40N/m) on different days. Only images that were entirely 
net-repulsive and avoided significant cutting marks were included in the study. All the phase 
images were collected on a 10 μm x 10 μm  length scale with a scan rate of 2 Hz.

PeakForce QNM Imaging
PeakForce QNM images were collected on a series of nine ICP samples (A2, B1, B2, B3, 
B4, B5, C3, C5, and E4) using a Bruker Icon® AFM. Since PeakForce QNM images often 
require more time to collect than phase images, it was decided to increase the duty cycle 
of the PeakForce QNM data acquisition through automation. AutoMET® software was 
used to program a routine to automatically image three polymer samples, followed by a 
tip-characterization sample. Five scans were collected on each of the polymer samples 
with a 4 µm scan size and scan rate of 1 to 1.5 Hz. The tip characterization sample was 
imaged once for every 15 polymer sample images using ScanAsyst® and a 2.5 µm scan 
size with a 2:1 aspect ratio. Approximately forty-five images were collected on each of the 
nine samples.

An RTESPA 150-30 probe with a nominal 5 N/m spring constant and 30 nm probe radius 
was used for all measurements. Note that this choice of probe is optimized toward the 
measurement of the rubber properties in the ICP and is not ideal for quantification of the 
polypropylene properties. A total of three probes were used to collect all the images in 
this study.

Analysis of the tip characterization samples was done using Bruker software and the tip-
qualification feature. This analysis showed that for probes with an initial radius of 30 nm, 
changes to the tip diameter were minimal over the course of all the measurements, with 
changes of up to 2 nm (in either direction) recorded.

Some preprocessing of all the AFM images was required. For the AFM images, the 
phase scale was normalized so that absolute phase degrees information is discarded 
and only the relative phase difference between the two components is captured. For the 



PeakForce QNM data, the deformation and dissipation channels were used “as is” with 
no additional processing. The DMT modulus channel contained some noise, which was 
removed prior to its use as an input to the DL model. 

Machine Learning
CNNs are popularly used for image classification. CNNs with residual network architectures 
were used to build both the classification and the regression problems. Appropriate 
activation functions were used in the final layers of the classification and regression models 
so that they would predict a class and a value respectively. The set of images collected 
from AFM were randomly divided into 80% training data, and 20% was kept aside as test 
set to evaluate the DL model. The data size was relatively low for training purposes. Data 
augmentation techniques were used to increase the training set by five-fold. Each image 
was rotated 90 degrees, 180 degrees, and 270 degrees, and it was also flipped upside 
down, which generated a set of five images from one. A 50-layer-deep residual network 
(ResNet) was trained to build a classification model. A Tensorflow6 module with a Keras 
backend was used to train all the models. The DL model structures were the same for the 
phase and the PeakForce QNM data. The models were either trained on phase data or 
PeakForce QNM data sets. While training the models to predict the material properties, 
the models were trained separately for each of the properties, which resulted in separate 
models for predicting different properties. 

Confusion matrices are an effective tool to evaluate the accuracy of a machine learning 
to classify test data. In a confusion matrix, the true label is on the horizontal, while the 
ML model’s predicted label is on the vertical axis. The ideal analysis would result in non-zero 
elements along the diagonal, and all zero off-diagonal elements indicating a 100% accuracy 
of the model’s ability to classify test data correctly.  

The models were then evaluated on the hold-out test data set. The classification models 
were evaluated on the basis of overall accuracy of prediction, and further prediction details 
were shown on a confusion matrix. The regression models were evaluated with an R2 score. 
An R2 score measures how much better or worse the model performance is compared to 
a baseline prediction of the mean of possible outcomes as the prediction every time. An R2 
score of 1.0 implies perfect predictions, and the closer the R2 score is to 1.0 the better the 
model performance is. While building predictive models where outcomes (numeric values) 
are close to each other (which was the case for the correlation model for predicting material 
properties), the R2 score is an appropriate measure to evaluate model performance.

Results

A representative phase image of an impact copolymer (ICP) is shown in Figure 1a. There 
are three components to the ICP material: the yellow background that is comprised of the 
PP matrix, the dark brown domains of ethylene-propylene rubber, and the lighter ethylene 
inclusions within the rubber domains. There are many differences between the various 
ICPs explored in this study including: rubber domain/inclusion size, density, and distribution, 
and the quantitative mechanical measurements on the rubber domains. Figure 1b shows 
an analysis of the PeakForce QNM modulus data from three samples (A2, C3, and C5), 
revealing a significant difference in the DMT moduli between the rubbers in these three 
ICP samples, where A2 exhibits the lowest value (33 MPa) and C5 is almost 4x higher 
(130 MPa). This quantitative mechanical information is uniquely available from an AFM-based 
technique such as PeakForce QNM and can significantly enhance the accuracy of ML 
models for classification and prediction of bulk properties.



Classification
The ability of the ML models to classify the various ICPs was evaluated with results shown 
in confusion matrices (see Figures 2 and 3). First, the ability of the various AFM channels 
to accurately classify the various materials is shown in Figure 2, where phase data, the 
PeakForce QNM deformation channel, the PeakForce QNM dissipation channel, and the 
PeakForce QNM DMT modulus channel are all compared for a set of three samples (A2, C3, 
and C5). The ML model based on the PeakForce QNM deformation channel provided the 
best accuracy at 95.8%, followed by similar accuracy by the dissipation channel (87.5%) and 
DMT modulus channel (86.4%), with the phase data showing the lowest accuracy (78.4%).
The model was then trained on a larger sample set comprised of five samples, including 
B3 and B4 that were challenging to differentiate by eye. Models built on phase data and 
PeakForce QNM deformation data are compared in Figure 3 for this larger sample set. The 
ML model based on deformation data accurately classified the five ICPs 65.8% of the time 
while the phase data exhibited accuracy for 58% of the test data.

FIGURE 1

A) representative image 
of an impact copolymer 
(ICP) and B) distribution 
of DMT modulus of 
rubber domains in 3 ICPs 
(A2, C3, C5).
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FIGURE 2

Confusion matrices 
showing results of a CNN 
classifying three ICPs (A2, 
C3, C5) using the various 
AFM data collected in this 
study: PeakForce QNM 
deformation, PeakForce 
QNM dissipation, 
PeakForce QNM, DMT 
modulus, and phase.

 

Deformation Channel Dissipation Channel

Phase DataModulus Channel



Bulk Property Prediction
Models based on phase data and PeakForce QNM deformation data were built and trained 
in order to predict the bulk mechanical properties of notched izod, flexural modulus, Young’s 
modulus, and ultimate elongation. The results of the DL’s prediction on test data for five 
samples (A2, B3, B4, C3, and C5) is shown in Figure 4, where the purple bars are the bulk 
property, the green bars are prediction from a model based on PeakForce QNM data, and 
the orange bars are the prediction from a model based on phase data. As described above, 
the R2 score is used to quantify the accuracy of the model’s prediction for an individual 
property. As seen in Figure 4e, for all the bulk properties, the R2 score for models built on 
the deformation channel were higher than that of the phase data. The ultimate elongation 
(figure 4c) and Young’s modulus (figure 4d) had the highest accuracy (both kinds of models), 
with notched izod (figure 4b) showing the lowest accuracy for both the PeakForce QNM and 
phase data. The general trend in prediction is similar between phase and PeakForce QNM 
data with the latter generally showing a better performance.
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FIGURE 3

Confusion matrices 
showing results of a 
CNN on a five-way 
classification of five ICPs 
(A2, B3, B4, C3, C5) using 
the PeakForce QNM 
deformation channel and 
the phase data.
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FIGURE 4

Results of a regression-
based CNN for a five-
sample ICP set to predict 
various bulk mechanical 
properties: A) flexural 
modulus, B) notched izod, 
C) ultimate elongation, 
D) Young’s modulus, 
E) comparison of R2 
scores for the ML-phase 
and ML-PFQNM 
models for the various 
bulk properties.

 



Given that the PeakForce QNM deformation channel provided the best accuracy, a 
ML model based on deformation was trained and tested on an expanded set of nine ICP 
samples (A2, B1, B2, B3, B4, B5, C3, C5, and E4). The results of the ML model’s ability 
to predict a series of five mechanical properties – notched izod, flexural modulus, Young’s 
modulus, yield strength, and ultimate elongation – are shown in figure 5. Note the addition 
of a model to predict yield strength is included in this larger set because it provided an 
appropriately broad spectrum in the yield strength value. The ML model is appropriate only 
when there is a wide range in the property it is trying to predict. In this larger sample set, 
the flex modulus and yield strength showed good ability of the ML model to predict the bulk 
property. Similar to the results in Figure 4, the notched izod was predicted with the lowest 
accuracy among all the material properties.

Discussion

There are a few reasons why the deformation channel performed best among all 
the available AFM data. All the AFM data (phase and PeakForce QNM) are providing 
morphological information on the rubbers and their inclusions: their size, distribution, and 
density. The PeakForce QNM data, however, provides additional quantitative mechanical 
data as well, whether it is the DMT modulus of the rubber, the deformation of the cantilever 
into the rubber (that is related to its modulus), or the dissipation channel that is related to the 
energy dissipated by the cantilever into the material. 

Among the PeakForce QNM channels, the deformation channel provides some unique 
advantages. First, it is the cleanest channel in terms of spurious noise relative to the 
dissipation and DMT modulus. The deformation channel is also less influenced by adhesion 
than other channels, such as the dissipation channel where small changes in tip chemistry 
could alter the measurement. Finally, the deformation channel is measured directly from the 
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FIGURE 5

Results of a regression-
based CNN for a 
nine-sample ICP set 
to predict various bulk 
mechanical properties: 
A) notched izod, 
B) flexural modulus, 
C) yield strength, 
D) ultimate elongation, 
E) Young’s modulus.

 



force curve on the approach. This contrasts with the dissipation channel (measured between 
the approach and retract) or the DMT modulus (measured on the retract). Additionally, the 
DMT modulus error and noise increase if the change in deflection approaches the change 
in Z position or if there is a viscoelastic component to the deformation. All these reasons 
contribute to the deformation channel providing the best results for the ML model’s ability to 
classify and predict the bulk properties of the various ICPs.

The bulk mechanical properties predicted in this study measure various elastic and plastic 
properties. Ultimate elongation is a plastic property that measures the percentage increase 
in length that occurs in a material before it breaks under tension. Yield strength is on 
the border of elastic-plastic behavior and is the measured stress at the onset of plastic 
deformation. The notched Izod test measures impact toughness and is a plastic property. 
Finally, Young’s modulus and flexural modulus are purely elastic properties.

The flexural modulus and Young’s modulus are predicted well by the regression-based 
ML model (see Figure 5), suggesting that the microstructure and quantitative deformation 
information are correlated to these properties. This is not surprising since the deformation 
is directly related to the modulus of the material, albeit being measured on the nanoscale 
in the PeakForce QNM channel. Alternatively, the impact toughness of the material as 
measured by the notched izod was not well predicted by the models, suggesting that 
the same information – at least on this 4 µm length scale – was not sufficient to predict 
impact toughness. This leaves open many other possibilities that can be explored to 
improve the prediction of impact toughness, such as combining different PeakForce QNM 
channels, collecting data on different length scales, and collecting quantitative mechanical 
measurements on the PP matrix, which would require repeating the measurements with a 
cantilever with a different spring constant that is better matched to the stiffer PP.

Conclusions

Deep learning models have been applied to classify a set of ICP materials and predict their 
bulk mechanical properties based on various types of AFM data. Both AFM phase data 
and PeakForce QNM data (DMT modulus, dissipation, and deformation) were used to 
build CNNs to perform this analysis. The deformation channel provided the best accuracy 
for the classification measurements on test ICP data for a series of five samples. Based 
on these results, CNNs built on AFM deformation data predicted the Young’s modulus, 
flexural modulus, yield strength, notched izod, and ultimate elongation of an expanded 
set of nine ICP samples. The most accurate predictions were for yield strength, flexural 
modulus, and Young’s modulus. Future predictions for other properties can be improved by 
exploring different length scales, adding additional PeakForce QNM data channels beyond 
deformation, and obtaining quantitative measurements on the polypropylene matrix material.
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